

KIT/IMVT

H₂S - PROTON

Hydrogen production from H₂S decomposition in micro-structured proton-conducting (H⁺) solid oxide membrane reactors

Dr. Spyros Voutetakis PSDI/CPERI/CERTH

Greece

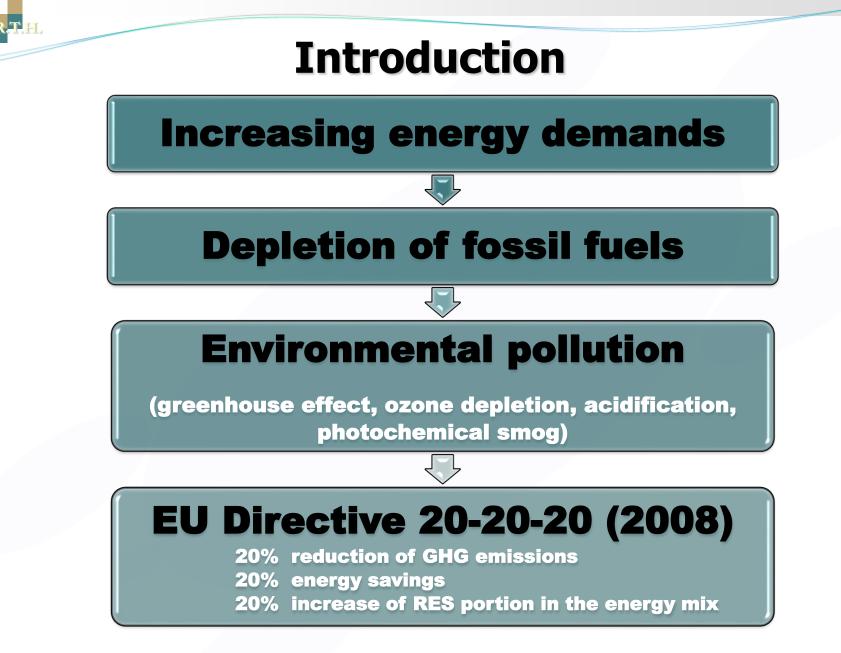
BS-ERANET: Networking on Science and Technology in the Black Sea Region

Bucharest, December 11-12, 2012

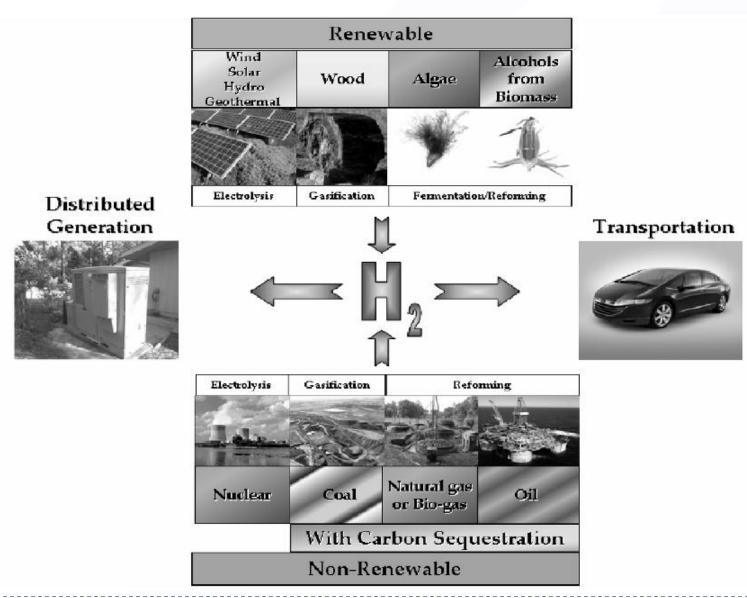
Outline

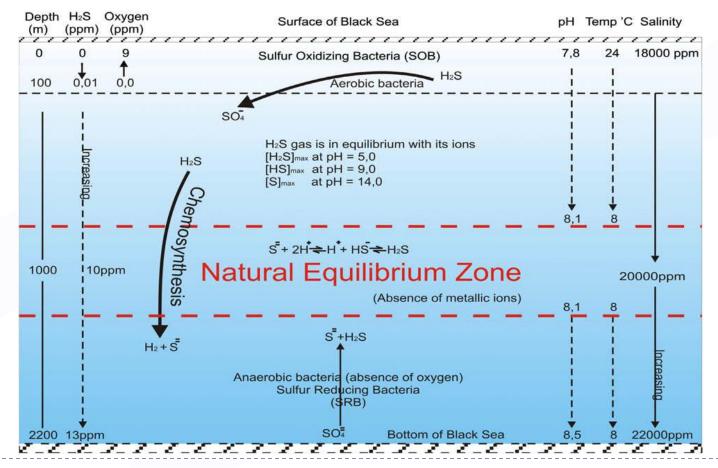
- Introduction
- Hydrogen Economy- Black Sea Rich in H₂S
- Project Summary
- Project Scope
- Project Coordinator and Partners
- Challenges of the Proposed Concept
- Main Objectives and Expected Results of the Project
- WP's Description
- Work Performed

Introduction


World energy requirements are increasing

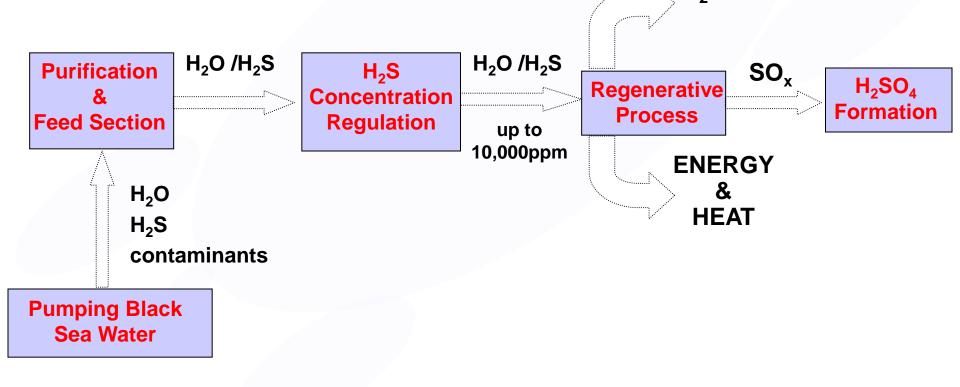
- Increase of population
- Technological development
- Living standards




Hydrogen Economy

Black Sea Rich in H₂S

H₂S Concentration levels


- Surface \rightarrow 0 ppm
- Increase gradually after 100 m
- 1000 m → 10ppm
- Bottom \rightarrow 14ppm

Project Summary

Hydrogen production from Black Sea consists of the following steps:

- a) Pumping of sea water from $\sim 1000m$ depth
- b) Extraction of concentrated H₂S/H₂O mixtures
- c) Decomposition of H₂S to H₂ and S

Η,

Anode is exposed to concentrated H_2S/H_2O mixtures (0.1-1% H_2S) and catalyzes the decomposition of H_2S to H^+ and S.

>H⁺ are transferred through the dense solid electrolyte membrane to the cathode, where they are converted:

- either to H₂ (pumping mode) or
- to H₂O generating power (fuel cell mode).

 \gg If O₂ is present at the anode, the generated S_n (n = 1-8) will react to SO₂/SO₃ and further with excess H₂O to H₂SO₄.

Project Scope

The project addresses the priority :

"Hydrogen production from H₂S rich Black Sea Water",

aiming to develop a micro-structured proton conducting electrochemical membrane reactor that will enable the efficient exploitation of Black Sea's water for H_2 production (~270 Mtn).

Project Coordinator and Partners

Chemical Process & Energy Resources Institute/ Centre for Research and Technology Hellas

KIT/IMVT

YTU

Institute for Micro Process Engineering/ Karlsruhe Institute of Technology

Chemical Engineering Department/ Yildiz Technical University

10 NETWORKING ON SCIENCE AND TECHNOLOGY IN THE BLACK SEA REGION Buck

Bucharest, December 11-12, 2012

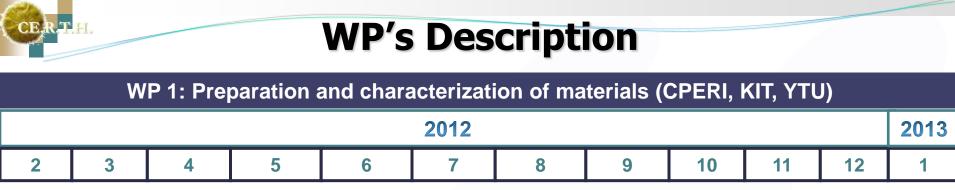
Challenges of the Proposed Concept

Production of pure H₂ (at the cathode) from H₂S with 100% selective separation in a single device.

Co-generation of H₂SO₄ (at the anode).

 Enhancement of H₂ generation rate by shifting the equilibrium of the decomposition reactions and through the electrochemical promotion approach (EPOC).

 Simultaneous production and use of hydrogen for the generation of heat and power (during fuel cell operation mode).


- Autonomous thermal operation.
- Flexible process modules.

Main Objectives and Expected Results of the Project

 Preparation of H₂S-tolerant H⁺-conducting ceramics with high ionic conductivity (>10 mS/cm) at intermediate temperatures (700-1000 K) and adequate chemical stability/mechanical strength.

• Preparation of H_2S -tolerant and conductive anodic composites with high catalytic activity towards H_2 (> 4.10⁻⁷ moles.cm⁻².s⁻¹) production.

- Preparation of cathodes with high electronic conductivity (0.5-0.05 OHMcm²).
- Construction of corrosion resistant ceramic or metal supported micro-cells using advanced fabrication techniques that will lead to flexibility.
- Simulation of transport phenomena taking place in the H⁺-conducting cell.
- Optimization and economical evaluation of a scaled-up integrated system.

1.1 Preparation and selection of solid electrolytes (CPERI)

1.2 Preparation of electrodes (YTU, CPERI)

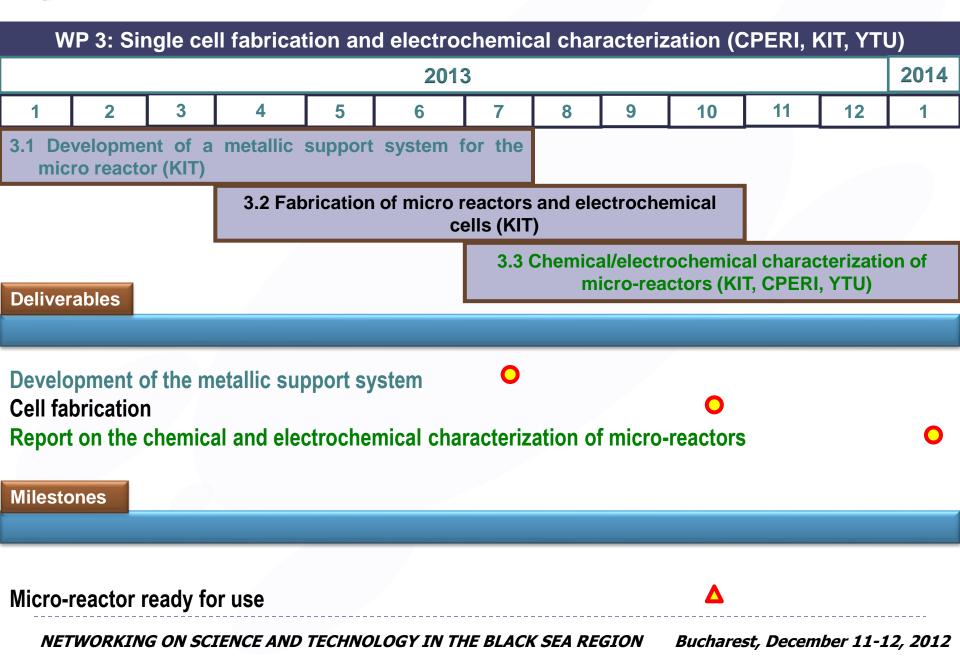
1.3 Physicochemical characterization (CPERI, KIT, YTU)

1.4 Characterization of interfaces (KIT)

Deliverables

Solid electrolytes. Preparation protocol and selection of best materials	0			
Electrodes/catalysts. Preparation protocol of anodes and cathodes	0			
Report on materials properties				
Report on corrosion and failure mechanisms in interface		0		
Milestones				

Selection of solid electrolyte membranes

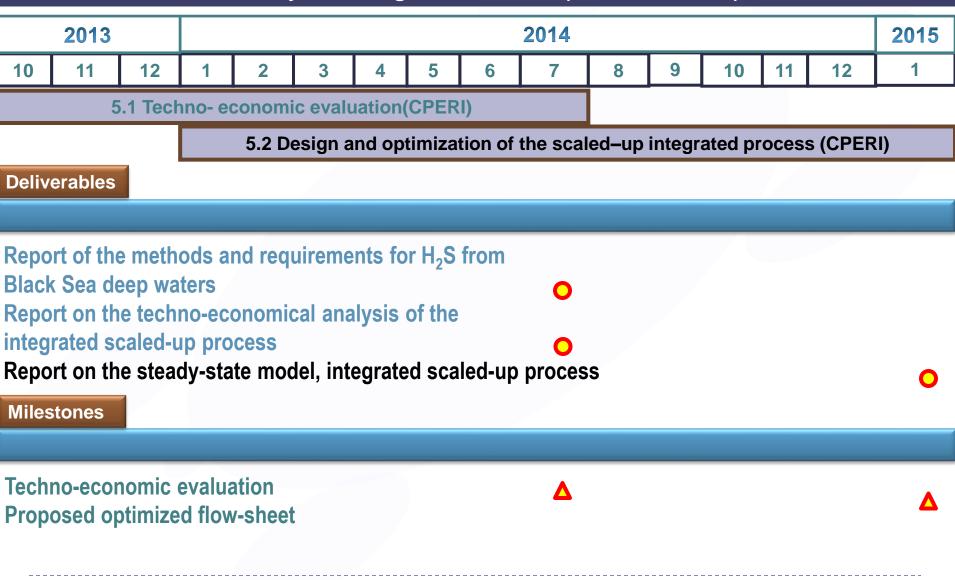


WP's Description

	WP 2: Anodic electrodes selection (CPERI, YTU)											
2012					2013							
7	8	9	10	11	12	1	2	3	4	5	6	7
2.1 Activity and stability tests on H ₂ S decomposition (YTU, CPERI)					tion							
2.2 Activity and stability tests for H ₂ SO ₄ production (YTU, CPERI)												
2.3 Surface chemistry analysis and mechanistic considerations (CPERI, YTU)						tic						
Deliver	ables											
			electrode			ns			0			
Report	on reac	tion mec	hanism fo	or both rea	actions							0
Milesto	Milestones											
Selection of most promised anodic composites												
NET	WORKIN	G ON SCIE	NCE AND TE	ECHNOLOG	Y IN THE	BLACK SE	A REGION	l Buch	arest, E	December	11-12,	2012

WP's Description

CE,R.T.H.


WP's Description

	WP 4: Reactor and fuel cell studies (CPERI, KIT, YTU)														
2013							2014								
7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
4.1 C	4.1 Open and closed circuit electrocatalytic measurements (CPERI, YTU, KIT)														
	4.2 Fuel cell measurements (CPERI, KIT)														
	4.3 Long-term stability tests (CPERI)														
	4.4 Process modeling (CPERI, KIT)														
Deliv	erables														
		10 C	n and e	electro-o	atalyti	c meas	ureme	ents	0						
	for H ₂ production O Report on fuel cell measurements O														
•				nd flexik		operat	ion								0
		•						ind co	ntrol an	alysis					ŏ
Miles	tones														
Flexi	ble ope	ration	with m	inor de	gradati	on for	100 h	of ope	ration						Δ
Dyna	Dynamic modeling and control of a regenerative based on H ⁺ conductors							Δ							
N	NETWORKING ON SCIENCE AND TECHNOLOGY IN THE BLACK SEA REGION Bucharest, December 11-12, 2012														

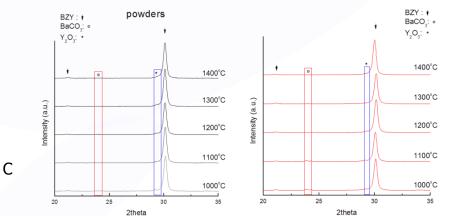
WP's Description

WP 5: System Integration and TEE (CPERI, KIT, YTU)

WP's Description

WP 6: Project management and results dissemination (CPERI, KIT, YTU)

WP1 PREPARATION AND CHARACTERIZATION OF MATERIALS (1 - 12)


2012	2013	2014	2015
2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1ta

1. Preparation and selection of solid electrolytes (01-09)

- ✓ Based on literature, we selected the $BaZr_{0.85}Y_{0.15}O_{3-\delta}$, BZY, proton-conducting perovskite as solid electrolyte due to its mechanical/chemical stability and good performance under H₂S atmosphere.
- ✓ BaZr_{0.85}Y_{0.15}O₃ electrolyte was synthesized employing the solid state reaction method. The formation of barium carbonate was prevented by sintering at 1450 °C in a compacted form.

POWDER form:

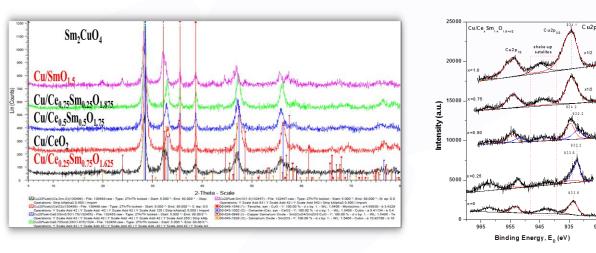
Impurities in traces up to 1400° C Not a pure perovskite BaCO₃ traces up to 1300° C Y₂O₃ traces persistent up to 1400° C

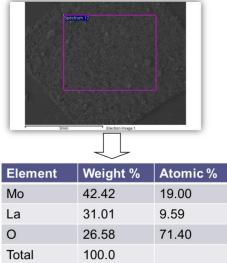
Protected Pellets :

BaCO₃ traces up to 1100° C & Y₂O₃ traces up to 1100° C

19 NETWORKING ON SCIENCE AND TECHNOLOGY IN THE BLACK SEA REGION Bucharest, D

Bucharest, December 11-12, 2012

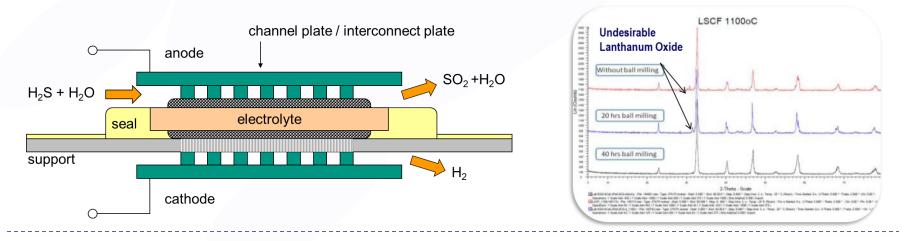

WP1 PREPARATION AND CHARACTERIZATION OF MATERIALS (1 - 12)


2012	2013	2014	2015
2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1

2. Preparation of electrodes (01-09)

3. Physicochemical characterization (3-12)

✓ Synthesis (impregnation) and physicochemical characterization (BET, ICP, XRD, XPS, SEM) of 20%Cu/Ce_{1-x}Ln_xO_z anodic composites (where Ln: Gd, Sm, Pr, La, Nd) and LaSrMoO – LaSrVO perovskites (citrate method).

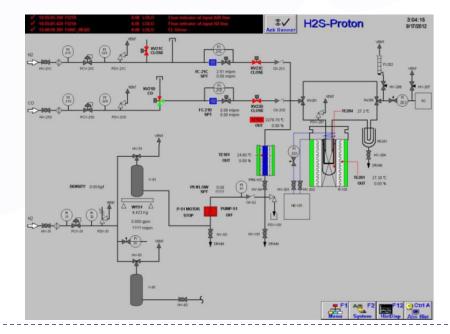


WP1 PREPARATION AND CHARACTERIZATION OF MATERIALS (1 - 12)

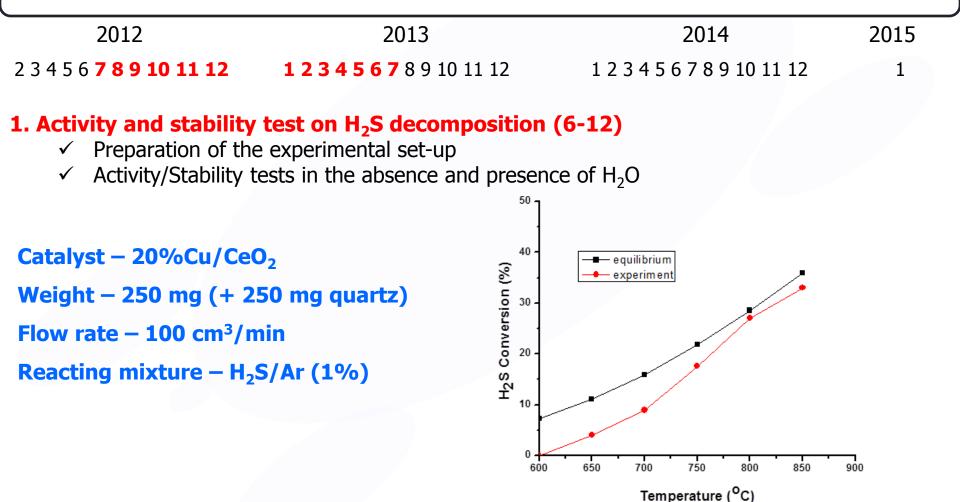
2012	2013	2014	2015
2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1

4. Characterization of interfaces (3-12)

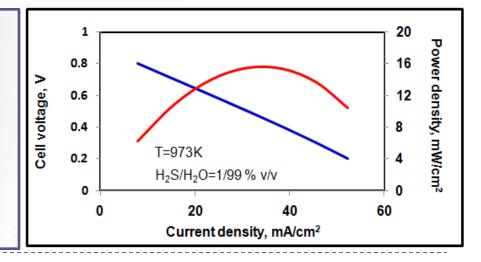
- ✓ LSCF perovskite (cathode) was prepared using the citrate method with sufficient phase purity at T>1100 °C and 40 h ball milling before calcination.
- $\checkmark~$ All materials will be checked concerning interface integrity and corrosion rates.


WP2 ANODIC ELECTRODES SELECTION (6 - 18)

2012	2013	2014	2015
2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1


1. Activity and stability tests on H₂S decomposition (6-12)

- ✓ Preparation of the experimental set-up
- ✓ Activity/Stability tests in the absence and presence of H_2O


WP2 ANODIC ELECTRODES SELECTION (6 - 18)

WP4-5 Reactor and fuel cell studies System Integration and TEE (18-36)

- CFD modelling overview concerning species and temperature distribution.
- Process modelling requirements in a scaled-up regenerative process.
- Process control issues regarding effective model based advanced strategies.
- System integration on the framework of an integrated system with multiple units effectively connected to each other.
- Technoeconomic analysis ranging from H₂S extraction up to product exploitation.

A feed concentration of ca. 0.5%H₂S in H₂O is thermodynamically optimal for the electrochemical reactor and that the heat management is crucial for an economical operation.

WP6 Project management and results dissemination (1-36)

- Consortium Agreement
- Umbrella Agreement
- Kick- off Meeting
- 6th month Meeting
- Skype Meeting
- Project web-site

h2sproton.cperi.certh.gr

H25 - PROTON

nembrane reactors

ct addresses the priority "Hydrogen production from H2S rich Black Sea Water", aiming to develo o-structured proton conducting electrochemical membrane reactor that will enable the efficien ation of Black Sea's water for H₂ production (~270 mtons).This approach has the potential to delive substantial guantities of H2 to regional countries, helping them to take part in the forthcoming "H2 economy

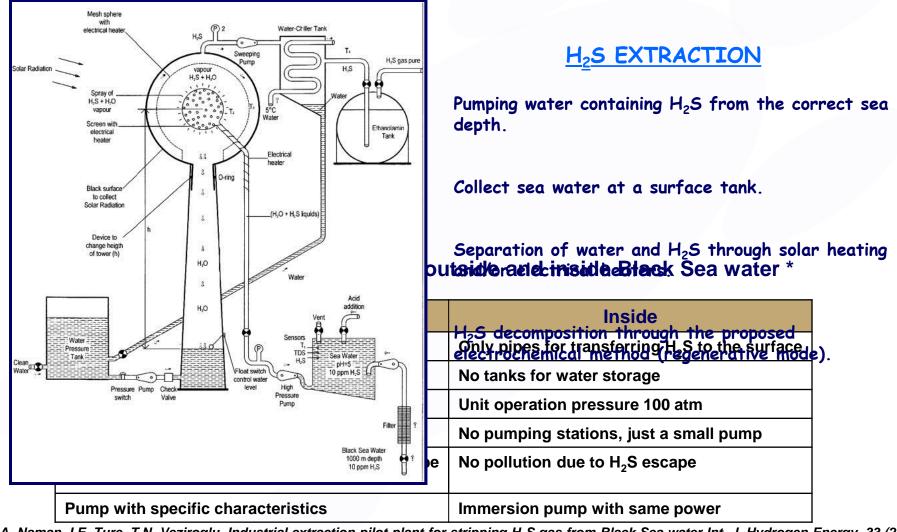
Preparation of H28-tolerant H*-conducting ceramics with high ionic conductivity (>10 termediate temperatures (700-1000K) and adequate chemical stabilitymechanical strength. Preparation of H28-tolerant and conductive anotic composites with high catalytic activity tov 10-7 moles.cm⁻².s⁻¹) and HgSO4 (> 50% selectivity) production

Preparation of cathodes with high electronic conductivity (0.5-0.05 Dcm²). Construction of corrosion resistant ceramic or metal supported m-cells chniques that will lead to flability in the construction of modules. Simulation of transport phanomena taking place in the H⁺-conducting call using CFD modelling

tion and economical evaluation of a medium/large scale integrated system

osals:Black Sea Pilot Plant Joint Call

mm H28-PROTO


25 NETWORKING ON SCIENCE AND TECHNOLOGY IN THE BLACK SEA REGION

Bucharest, December 11-12, 2012

THANK YOU FOR YOUR ATTENTION

PROGRESS COMPARISON FOR H₂S EXTRACTION

*S.A. Naman, I.E. Ture, T.N. Veziroglu, Industrial extraction pilot plant for stripping H₂S gas from Black Sea water Int. J. Hydrogen Energy, 33 (2008) 6577-6585.